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Abstract  12 

 13 

The field of conservation genomics is becoming increasingly interested in whether, and how, 14 

structural variant (SV) genotype information can be leveraged in the management of threatened 15 

species. The functional consequences of SVs are more complex than for single nucleotide 16 

polymorphisms (SNPs), as SVs typically impact a larger proportion of the genome due to their 17 

size, and thus may be more likely to contribute to load. While the impacts of SV-specific genetic 18 

load may be less consequential for large populations, the interplay between weakened 19 

selection and stochastic processes mean that smaller populations, such as those of the 20 

threatened Aotearoa hihi/New Zealand stitchbird (Notiomystis cincta), may harbour a high SV 21 

load. Hihi were once confined to a single remnant population, but have been reestablished into 22 

six sanctuaries and reserves, often via secondary bottlenecks, resulting in low genetic diversity, 23 

low adaptive potential and inbreeding depression. In this study, we use whole genome 24 

resequencing of 30 individuals from the Tiritiri Matangi population to identify the nature and 25 

distribution of both SNPs and SVs within this small avian population. We find that SNP and SV 26 

individual mutation load is only moderately correlated, likely because SVs arise in regions of 27 

high recombination and that are less evolutionarily conserved. Finally, we leverage a long-term 28 

monitoring dataset of pedigree and fitness data to assess the impact of SNP and SV mutation 29 

load on individual fitness, and demonstrate that SV load correlates more strongly than SNP 30 

load with lifetime fitness. The results of this study indicate that only examining SNPs neglects 31 

important aspects of intraspecific variation, and that studying SVs has direct implications for 32 

linking genetic diversity and genomic health to inform management decisions.   33 
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1 | Introduction 34 

 35 

Inclusion of genomic data into conservation management is becoming more common practice. 36 

For wild unmanaged species and populations, this is being driven by the increasing recognition 37 

of the ability of genomic data to reveal many biologically relevant patterns within species, such 38 

as cryptic information about animal dispersal (Alves et al., 2023), demographics (Zhao et al., 39 

2013), and local adaptation (Yang et al., 2016), which may provide valuable information to guide 40 

population delineations and management practices. For species undergoing more active 41 

management such as breeding programs, assisted translocation, and genetic rescue, genomic 42 

data is essential to facilitate optimal conservation outcomes. These data allow for 43 

quantification of inbreeding levels (Hedrick et al., 2016), assessing the impacts of deleterious 44 

mutations (Humble et al., 2023), and monitoring the outcomes of breeding programs 45 

(Frankham, 2008; Lynch & O’Hely, 2001), which may greatly impact the long-term survival of a 46 

population of interest.  47 

 48 

As conservation managers increasingly incorporate genomic data into practice, there is growing 49 

discussion around the relative utility of different genomic sequencing approaches (Theissinger 50 

et al., 2023). Amongst these is whole genome resequencing (WGR), which involves sequencing 51 

of the entire genomic DNA present within an organism. Despite a steady decrease in 52 

sequencing costs over recent decades, WGR may still be prohibitively expensive for population-53 

level sequencing in many systems (Fuentes-Pardo & Ruzzante, 2017). WGR has been primarily 54 

applied in the study of health (Turro et al., 2020), model organism systems (Cao et al., 2011) 55 

and for agriculturally important species (Usha et al., 2022), however its application in wild 56 

populations has been gaining popularity. Application of WGR data to conservation genomics 57 

has revealed  that while WGR may reflect the same broad patterns seen in more economical 58 

approaches (Duckett et al., 2023), the high density of genetic markers is invaluable for some 59 

genomic analysis such as inferring the landscapes of inbreeding (Duntsch et al., 2021) and 60 

genomic divergence (Szarmach et al., 2021). An important question then remains of whether, 61 

given this extra cost, WGR has unique utility to conservation biology practice, and if so, under 62 

what set of circumstances (Fuentes-Pardo & Ruzzante, 2017; Haig et al., 2016; Kardos et al., 63 

2021; McMahon et al., 2014). 64 

 65 

One area in which WGR plays a vital role is in the profiling of complex genomic variants, 66 

including structural variants (SVs), alongside single nucleotide polymorphisms (SNPs) (Kardos 67 
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et al., 2021). SVs typically span tens of bases to multiple megabases (Scherer et al., 2007), and 68 

are increasingly being recognised as important components of intra-specific genetic variation 69 

(Catanach et al., 2019; Wellenreuther et al., 2019; Wold et al., 2023). The functional 70 

consequences of SVs may be more complex than for single nucleotide polymorphisms (SNPs), 71 

as SVs typically impact a larger proportion of the genome (Collins et al., 2020), may harbour and 72 

accumulate SNPs and other small genetic variants within their length (Mahmoud et al., 2019), 73 

and are more likely to be deleterious when compared to SNPs (Hämälä et al., 2021).  74 

 75 

To this end, the field of conservation genomics is becoming increasingly interested how SV 76 

genotype information should be leveraged in the management of threatened species. 77 

Population-level profiling of genome-wide SVs require a minimum of moderate depth short-78 

read WGR data, though they still remain technically challenging to identify (Mahmoud et al., 79 

2019). The SVs may not be in strong linkage disequilibrium with the SNPs around them (Pang et 80 

al., 2010), so it is not guaranteed that focal structural variants can have their genotypes inferred 81 

from neighbouring or overlapping SNPs. Examining SNPs alongside SVs has revealed instances 82 

where patterns in one type of genetic variation are not reflected in the other (Catanach et al., 83 

2019; Stuart et al., 2023). Ongoing research into intra-specific structural variants is continuing 84 

to demonstrate the important role they play in, for example, facilitating convergent adaptation 85 

(Kreiner et al., 2019), and revealing previously hidden genotype associations (e.g. environment  86 

(Y. Li et al., 2024) or phenotype (Ruigrok et al., 2022)). Thus, the use of WGR data is essential to 87 

provide a holistic representation of genome wide patterns of genetic diversity or to identify 88 

specific variants associated with an ecotype or deleterious/beneficial functional trait.  89 

 90 

One pressing area of research is the relative impacts of SNP and SV variants within small 91 

populations, particularly in relation to concepts like inbreeding and genetic mutational load 92 

(the accumulation of deleterious variants) (Hohenlohe et al., 2021). In small populations, novel 93 

variants arise at initially higher frequencies and then may increase in frequency through drift. 94 

Conversely, in large populations novel variants arise at a low frequency and the change in 95 

frequency of the variants depend on the selection pressures present (Lohmueller, 2014). 96 

Because SVs are less likely to be neutral than SNPs, we may expect that the weakened 97 

selection within small populations (Edmonds et al., 2004) has the potential to produce 98 

differential patterns in these two different types of variants. Understanding how genetic 99 

mutational load, might differ when quantified using SNPs and SVs will be vital for linking 100 
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underlying patterns of genetic diversity to functional traits related to individual fitness, 101 

population persistence, and adaptive potential. 102 

 103 

Characterising genetic load is particularly relevant in threatened species, such as those of the 104 

hihi/stitchbird (Notiomystis cincta) (Fig. 1a). This species once covered much of Aotearoa New 105 

Zealand’s North Island, but their natural range had been reduced to a single offshore island, Te 106 

Hauturu-o-Toi by the 1880s (Fig. 1a; Brekke et al., 2011). This single remnant population has 107 

been used to establish a primary breeding colony on the offshore island of Tiritiri Matangi 108 

(Miskelly & Powlesland, 2013), from which most additional populations have been 109 

reestablished or supplemented (Brekke et al., 2011). However, the long-term success of 110 

established populations has been variable, with some experiencing limited population growth 111 

post-founding, and others failing to establish (Ewen et al., 2013; Parlato et al., 2021). While 112 

population success is dependent in part on extrinsic factors (e.g. Doerr et al., 2017), inbreeding 113 

and low adaptive potential within the species are also likely to be contributing to poor 114 

population health (de Villemereuil et al., 2019; Duntsch et al., 2023). The Tiritiri Matangi 115 

population is intensively monitored, including recording pedigree information and lifetime 116 

fitness, and so the hihi provides a means to better understand the differential impacts of SNP 117 

and SV genetic load on important conservation metrics such as fitness. 118 

 119 

In this study, we use whole genome resequencing of hihi individuals from the Tiritiri Matangi 120 

population to identify the nature and distribution of both SNPs and SVs within this small avian 121 

population. We quantify mutation load and assess how well individual SNP load acts as a proxy 122 

for SV load. We also examine the genomic location of SVs with respect to underlying patterns of 123 

recombination and avian genomic evolutionary conservation, to better understand how SVs 124 

arise and are maintained within the genomes of a species. Finally, leveraging a long-term 125 

monitoring dataset of fitness data for each individual, we test the impact of SNP and SV 126 

mutation load on lifetime fitness. We hypothesise that relative patterns in these two types of 127 

variants will reveal that SVs have a greater impact on lifetime fitness, reflecting the more 128 

deleterious nature of SVs in comparison to SNPs. 129 

  130 
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2 | Methods 131 

2.1 | Sampling 132 

We selected a total of 31 hihi (Notiomystis cincta) individuals for inclusion in the study. These 133 

individuals comprise four hihi sampled from the remnant population on Te Hauturu-o-Toi / Little 134 

Barrier Island, Aotearoa / New Zealand (36°12′ S, 175°05′ E) and 27 sampled from the 135 

reintroduced population on the island of Tiritiri Matangi (36°36′ S, 174°53′ E) (Fig. 1a). Of the four 136 

Te Hauturu-o-Toi individuals, two were translocated to Tiritiri Matangi in 2010 as a genetic 137 

rescue attempt (Nichols et al., 2024), both of which successfully bred in the population. The 138 

remaining two were sampled in 2017 and 2018 as part of a population diversity survey on Te 139 

Hauturu-o-Toi and were subsequently selected as our reference male and reference female for 140 

genome assembly (Bailey et al., 2023). Individuals on Tiritiri Matangi were sampled in several 141 

cohorts from 2001-2011 and were chosen as individuals that successfully bred and therefore 142 

are likely to represent diversity present in the current population. We note that because many 143 

hihi individuals do not breed successfully, this study assesses how load impacts the level of 144 

reproduction in known breeding individuals, rather than whether load impacts the occurrence 145 

of successful breeding.  Blood samples were taken at capture of all individuals via brachial 146 

venepuncture and stored in 95% ethanol. All individuals have been previously genotyped at a 147 

panel of 20 microsatellite markers (Brekke et al., 2009), which enables genetic sexing of the 148 

birds alongside inclusion in a genetically resolved pedigree for the entire Tiritiri Matangi 149 

population. The dataset includes 17 females, 14 males, and three close family groups; a parent-150 

offspring duo, a half-sibling pair and their genotyped father, and eleven focal individuals 151 

connected in a multi generation family, which includes two parent-offspring trios and four 152 

further parent-offspring duos (family groups noted in Table S1).  153 

We extracted gDNA from the blood samples of the 31 individuals with a Qiagen DNeasy Blood 154 

and Tissue Kit. Library preparation and whole genome resequencing (WGR) was conducted by 155 

AgResearch, New Zealand, in two experiments; in the first, libraries were prepared for 156 

sequencing with an Illumina kit, in the second with a Nextera XT library preparation that reduced 157 

adaptor contamination apparent in the first run. All samples (Table S1) were resequenced on 158 

the Illumina NovaSeq 6000 platform with S4 flowcells (150 bp paired end reads).  159 

2.2 | Single nucleotide polymorphism calling 160 

We merged raw reads across the two experiments. We then used TRIM_GALORE v0.6.7 (Krueger, 161 

2021) to process the merged reads using default settings and the flags ‘--paired’ for paired reads 162 
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and ‘--fastqc’ to produce read quality reports that were then compiled and assessed with 163 

MULTIQC v1.13 (Ewels et al., 2016). We mapped these processed reads to the female N. cincta 164 

genome assembly version (Bailey et al., 2023) using the mapping algorithm BWA v0.7.17 (H. Li, 165 

2013) mem. We used SAMTOOLS v1.16.1 (H. Li et al., 2009) to process the output files into sorted 166 

BAM files, before marking duplicate reads within each file using PICARD v2.26.10 (Picard Toolkit, 167 

2019) MarkDuplicates. Variants were then called using the program BCFTOOLS v1.13 (Danecek et 168 

al., 2021), first using the mpileup (-C 50 -q 20 -Q 25) function to generate genotype likelihoods 169 

and coverage information, then the call (-f GQ) function to produce SNP calls, view (--exclude-170 

types indels) function to retain only SNPs, and finally the sort function to order the SNPs into 171 

chromosome and positional order. We filtered the remaining variants using VCFTOOLS v0.1.15 172 

(Danecek et al., 2011) to retain only bi-allelic SNPs (--max-alleles 2) with a minimum depth of 5 173 

(--minDP 5) and a maximum mean depth of 100 (--max-meanDP 100), removing non-variant 174 

sites (--mac 1) and sites exceeding a missingness of 10% (--max-missing 0.9). We also filtered 175 

out all Z and W chromosome contigs, and excluded one individual that had very high 176 

heterozygosity estimates most likely due to sample contamination (individual 83318; 177 

contamination was apparent from both sequencing experiments). Our total dataset was 178 

therefore 30 birds, 26 of which were from Tiritiri Matangi and 4 of which were from Te Hauturu-o-179 

Toi. 180 

2.3 | Structural variant identification 181 

In order to identify the SV content within the 30 hihi individuals, we reanalysed the duplicate-182 

marked WGR data using the three short-read SV calling programs SMOOVE v0.2.8 183 

(https://github.com/brentp/smoove), which is a wrapper for LUMPY-SV (Layer et al., 2014), DELLY 184 

v0.8.2 (Rausch et al., 2012), and MANTA v1.6.0 (X. Chen et al., 2016). Calling SVs is based on 185 

several lines of evidence produced by sequence data, including read depth and coverage, as 186 

well as the mapping patterns of read-pairs and split-reads to infer the existence of a SV relative 187 

to the reference genome. Identifying SVs from read data may contain many false positive calls 188 

(Chakraborty et al., 2019; Weissensteiner et al., 2020; Wold et al., 2023), and thus often a 189 

consensus approach is used where a particular variant is only retained if it is identified using 190 

two independent variant caller programs. Specifically for this study, we chose to retain only SVs 191 

that, after passing the individual program’s quality filters, were found in a minimum of two out of 192 

the three variant calling programs used above. Briefly below we describe the three programs 193 

and the quality filtering criteria used to exclude low quality SV calls. 194 

https://github.com/brentp/smoove
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We identified SVs using the program SMOOVE by following the population-level calling workflow 195 

recommended in the program manual. This approach involves a per-individual variant calling 196 

step where SVs are identified within each sample independently. The individual’s SV calls are 197 

then combined into one merged cross-sample SV list, which are then genotyped within each 198 

individual separately before being combined again into a dataset containing all individuals. We 199 

also included the optional annotation step, which uses the exon and untranslated region (UTR) 200 

information in the genome annotation matching the N. cincta reference assembly to assign 201 

quality scores to genotyped variants. Using these quality scores, we filtered deletions (DEL) to 202 

FMT/DHFFC < 0.7, duplications (DUP) to FMT/DHBFC > 1.3, and all genotypes to MSHQ>=3, 203 

following Wold et al. (2023), while also only retaining variants on autosomal chromosomes.  204 

SVs were identified using the program DELLY by following the recommended germline SV calling 205 

workflow. The workflow is similar to that used by SMOOVE, and involves a per-individual SV 206 

calling step (DELLY call), a cross-sample SV calling merge step (DELLY merge), a per-sample 207 

genotyping step (DELLY call) and finally a cross-sample SV genotype merging step which 208 

combines all the individual SV calls into one variant file (BCFTOOLS merge -m id). We then filtered 209 

the resulting variant calls to retain only those where a minimum of 50% of individuals were 210 

assigned a per-individual ‘PASS’ score on their genotype, while also only retaining variants on 211 

autosomal chromosomes.  212 

We identified SVs using the program MANTA by following the default pipeline, which involved 213 

using configManta.py to generate and run the MANTA workflow. We ran the initial variant file 214 

through the MANTA function convertInversion.py in order to extract inversions (INV) from 215 

breakend calls, which is not automatically done by the program. We then filtered variants using 216 

BCFTOOLS view, retaining only those variants that were assigned a per-variant ‘PASS’ score, while 217 

also only retaining variants on autosomal chromosomes.  218 

We generated the consensus variant list using the program SURVIVOR v1.0.7 (Jeffares et al., 219 

2017), which merged the SVs identified by each program using several criteria, including the 220 

maximum allowed distance between predicted breakends of 1 kb, two SV caller support needed 221 

to retain a call, that the type and strand of the SV must agree, and a minimum SV length of 30 bp 222 

(parameter values set as “1000 2 1 1 0 30”). Merging was done separately for each individual, 223 

and we also forced SURVIVOR to only merge SV calls that agreed on genotype by merging 224 

independently for homozygous reference, heterozygous, and homozygous alternate SV calls 225 

within samples. Finally, we merged the retained variants into a joint sample file using the 226 
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parameters “1000 1 1 1 0 30” (setting the minimum SV caller support to 1 to create a merged 227 

variant file).  228 

2.4 | Structural variant curation and validation 229 

The SURVIVOR consensus SV list was then filtered to only include deletion (DEL), duplication 230 

(DUP) and inversion (INV) calls, as these were the three variant types that all three SV calling 231 

programs could identify. We also removed large variants (>50,000 bp) and those with >50% 232 

missing data across the 31 individuals. We also removed any SV that had no heterozygous 233 

individuals, as it is unlikely that a polymorphic SV would exist without heterozygous individuals 234 

being present. Similarly to SNPs, we also removed a contaminated sample from the dataset at 235 

this step (individual 83318). 236 

We manually curated these SVs to exclude false variants by visualising the raw sequence reads 237 

across the identified SV loci for two individuals of each genotype (homozygous reference, 238 

heterozygous, and homozygous alternate) where available. The visualisation was produced 239 

using SAMPLOT v1.3.0 (Belyeu, Chowdhury, et al., 2021) and then scored using PLOTCRITIC v1.0.1 240 

(Belyeu et al., 2018) by one curator to check for signals of SVs in the sequencing read depth and 241 

insert sizes (Fig. S1-S6).   242 

Because the Tiritiri Matangi population is small (~200 adults, Parlato et al., 2021), its pedigree is 243 

highly connected, and as noted above, our data contained several related individuals, with over 244 

half of the dataset organised into three family groups. Of these family groups, the large multi-245 

generation family included two parent-offspring trios with all three individuals resequenced. We 246 

did not remove relatives from the dataset, but did use them to assess genotyping error rates and 247 

to validate our manual curation. The program PLINK v1.09b6.16 (Purcell et al., 2007) was 248 

employed to calculate Mendelian error rates using the two WGR trios using the ‘--mendel’ flag. 249 

We assessed Mendelian error rates before and after manual curation, using both the two true 250 

parent-offspring trios, as well as two fake trios. Mendelian error rates reported were the 251 

averages of the two offspring individual error rates, which were each calculated by counting the 252 

number of Mendelian errors present in the offspring divided by the total number of genotyped 253 

sites within the offspring. 254 

2.5 | Structural variant filtering and profiling  255 

Some of the inter-individual variants detected by the above structural variant workflow will be 256 

due to TE activity which has a different impact profile to SVs (Stuart et al., 2024). In this study we 257 

are seeking to examine SV signals only, and hence removed any SV variants that had likely 258 
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resulted from TE activity (for further discussion on this see section 4.4: Technical validation of 259 

SVs and exclusion of TEs). For this we ran REPEATMASKER v4.1.0 (Smit et al., 2013) on the SV 260 

breakends (+/- 30 bp) using the N. cincta repeat library (Bailey et al., 2023), as repeat  261 

identification in the genomic region around a breakpoint will allow for identification of variants 262 

that are really TEs, rather than true SVs that simply contain a TE signal within their length. 263 

Variants that had been identified as a TE (classification: LINE, LTR, SINE, DNA) were removed 264 

from the SV data set, and then this data was filtered in VCFTOOLS to remove any non-variant sites 265 

(--mac 1) and variants with more than 50% missingness (--max-missing 0.5).  266 

We used PLINK to run a pca (--pca) on both the SNP and SV data. In addition, we compared 267 

heterozygosity based inbreeding (VCFTOOLS --het), minor allele site frequency spectra (PLINK --268 

freq), and per-variant genotype frequencies for SNPs and SVs. For these analyses and all others 269 

in the paper, the minor allele was used as the alternate allele.  270 

2.6 | Quantifying mutational load 271 

We sought to quantify per-individual genetic load for both SNPs and SVs, to examine the 272 

correlation between load calculated from these two different genetic marker types. We first 273 

needed to identify the positioning of variants relative to protein coding regions, as traditionally 274 

only variants close-to or overlapping coding regions are considered as contributing to load 275 

(Smeds et al., 2024). For this we used the variant effect predictor program VEP v107.0 (McLaren 276 

et al., 2016) to profile the impacts of the variants, and then quantified variants into one of four 277 

classes, based on their positioning relative to coding sequences. This included ‘Gene’ (variants 278 

occurring in exons), ‘Intron’ (variants occurring in introns), ‘Up-/Down-stream’ (variants <5kb up- 279 

and down-stream of a protein coding region), with all remaining variants being classed as 280 

‘None’. Variants of the three classes ‘Gene’, ‘Intron’, and ‘Up-/Down-stream’ were considered to 281 

be variants contributing to load. 282 

We quantified per-individual mutational load as both masked load and realised load. Masked 283 

load was quantified as the proportion of load contributing variants that were heterozygous. 284 

Realised load was quantified as the proportion of load contributing variants that were 285 

homozygous for the minor allele. Both load calculations were done separately for SNPs and SVs. 286 

Unfortunately, no close species of the hihi has been whole genome resequenced, and 287 

additionally SVs often occur in more species-unique regions of the genome (see Fig. 4 below) 288 

which means the use of more distant relatives is likely to bias the polarisation of SVs compared 289 

to SNPs. Therefore, polarising these data was not possible, and so we use minor allele here in 290 



10 
 

place of derived allele. We compared how well correlated per-individual load was across SVs 291 

and SNPs, by performing two regressions between the two comparing masked, and then 292 

realised load using the lm() function from the TIDYR package in R.  293 

2.7 | Recombination rates and linkage disequilibrium  294 

We next sought to examine the genomic distribution of SVs within hihi, specifically in relation to 295 

underlying recombination rates. The relationship between SVs and recombination rates is a 296 

complex one, as recombination can give rise to SVs (Carvalho & Lupski, 2016), however the 297 

presence of large SVs may inhibit recombination (Morgan et al., 2017). As part of our quality 298 

control of SVs, acknowledging the challenges of identifying large SVs from short read data, we 299 

excluded all SVs larger than 50kb, so our SV dataset is on average small and therefore unlikely to 300 

inhibit recombination. The dataset is therefore most likely representative of the recombination 301 

landscape in which SVs are likely to arise. We therefore tested to see if regions of the genome 302 

with SVs present had higher recombination rates, with recombination rates summarised across 303 

500Mb regions of the genome based on the hihi linkage map developed from pedigree (36 304 

families) and SNP chip (33,890 autosomal SNPs) data (Tan et al., 2024). We analysed this 305 

separately across macro- (chromosomes 1-7,1A) and micro-chromosomes (8-29, 4A) because 306 

they have very different recombination rates (chromosomal classification as per Bailey et al. 307 

2023). We identified that SVs were present in 450 of the 1,251 macrochromosome 308 

recombination windows, and for 221 of the 562 microchromosome windows. 309 

Additionally, we examined patterns of linkage disequilibrium decay around SVs and contrasted 310 

these to those seen around SNPs. For this, we combined all SV and SNP markers into one file, 311 

and assessed the linkage disequilibrium for the SVs to the surrounding variants using the 312 

vcftools function --geno-r2-positions, specifying  and assessing pairwise linkage disequilibrium 313 

up to 10 Mb away (--ld-window-bp 10000000). We also assessed SNP linkage disequilibrium 314 

decay using the same metrics, creating five random subset of 935 SNPs which were averaged.  315 

Finally, in order to better understand how processes of variant creation and selection may be 316 

differentially impacted by the genomic landscape of macro- and micro-chromosomes, we 317 

assessed the minor allele frequency of SNPs and SVs that do and do not contribute to load. 318 

2.8 | Evolutionary conservation analysis on multiple whole-genome alignments 319 

Next, we sought to identify where load contributing SNPs and SVs were positioned within the 320 

hihi genome, with respect to genomic conservation across other avian species. For this, we 321 

examined the hihi genome alongside additional passerine species downloaded from NCBI 322 
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including Eopsaltria australis (GCA_034509425.1), Passer domesticus (GCF_036417665.1), 323 

Hirundo rustica (GCF_015227805.2), and Taeniopygia guttata (GCF_003957565.2), with Gallus 324 

gallus (GCF_016699485.2) as an additional species to serve as an outgroup. We used TimeTree 325 

v5 (Kumar et al., 2022) to create a Newick tree for these species, and used REPEATMASKER to soft 326 

mask all the genomes using the Aves lineage specific sequences. We then aligned these six 327 

genomes using the program PROGRESSIVE CACTUS v2.7.2 (Armstrong et al., 2020). We used the 328 

function halAlignmentDepth from the HAL v2.3 (Hickey et al., 2013) toolkit implemented in 329 

PROGRESSIVE CACTUS to calculate per base genome alignment coverage of the hihi genome. This 330 

reports the number of other species that successfully mapped to each base position of the hihi 331 

genome. A genome alignment value of 0 is indicative of a region that did not align across other 332 

species and is unique to the hihi genome relative to the other species examined. A genomic 333 

alignment value of 5 indicates that that all the other species’ genomes aligned and is 334 

interpreted as a conserved region. 335 

We examined the level of genomic alignment underlying the SNPs and SVs, across the four 336 

classes of ‘Gene’, ‘Intron’, ‘Up-/Down-stream’, and ‘None’ that were identified during load 337 

quantification. We used BEDTOOLS to identify the genomic alignment value for SNPs based on 338 

their positioning, while for SVs we used the average of their first and last base pairs so that the 339 

level of genomic alignment was based on their breakends and not their sequence identity. To 340 

quantify the genomic alignment values of SNPs and SVs relative to the whole genome, we also 341 

calculated average evolutionary conservation for all ‘Gene’, ‘Intron’, ‘Up/Down-stream’ and 342 

‘None’ sites genome-wide.  343 

2.9 Impacts of lifetime fitness 344 

Finally, leveraging a long-term monitoring dataset of pedigree and lifetime fitness data, which 345 

was available for 28 out of the 30 individuals used in this study (because 2 of the Te Hauturu-o-346 

Toi birds were translocated and bred on Tiritiri Matangi), we assessed the impact of SNP and SV 347 

mutation load on lifetime fitness. Lifetime fitness was measured as the total number of banded 348 

offspring of each individual across its lifetime, and therefore measures fitness across one life 349 

cycle, from banding to banding (de Villemereuil et al., 2019).  350 

We set lifetime fitness as the dependent variable and ran three separate linear mixed models for 351 

SNPs and SVs each; one for realised load (i.e., minor allele homozygotes at load sites), one for 352 

masked load (i.e., heterozygous at load sites) and one for common allele homozygotes, 353 

quantified as the proportion of load contributing variants that were homozygous for the major 354 

allele (i.e., the remaining proportion of genotypes). In each model, the SNP /  SV load was 355 
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included as a fixed effect along with individual sex, and sampling cohort was included as a 356 

random effect. To quantify the relative contribution of SNPs and SVs to load, we also ran a 357 

further two models where we included both variant types as fixed effects for each respective 358 

category of load (i.e., masked and realised). In both models, individual sex was again included 359 

as a fixed effect, and sampling cohort a random effect. Linear mixed models were run in R using 360 

the lmer() function in the package LME4 V 1.1-26 (Bates et al., 2015). 361 

We sought to examine if the evolutionary conservation had an impact on load by following up 362 

significant results from the above models, of which only masked SV load was found to be 363 

significant. We partitioned the masked SV load contribution up into two components: those 364 

variants which fell into evolutionary conserved regions (where the average evolutionary 365 

conservation score of the two breakends averaged was four or larger), and the remaining 366 

variants. We ran a final linear mixed model as above, with just these two components of masked 367 

SV load, and with individual sex as a fixed effect and sampling cohort as a random effect. 368 

 369 

3 | Results 370 

3.1 | SV characterisation and validation 371 

Across the three SV detection programs, DELLY identified the largest number of variants at 372 

13,176 SVs, closely followed by MANTA AT 12,672 SVs, with SMOOVE identifying only 3,275 SVs 373 

(Table S2). From these, a total of 2,991 variants were identified in at least two out of the three 374 

programs and were retained after meeting consensus criteria.  375 

After manual curation this number was reduced to 1,229. Mendelian inheritance error rates 376 

decreased from 1.6% to 0.9% after manual curation. We found that the Mendelian inheritance 377 

rates of the true parent-offspring trios were much higher than for the fake trios, which were 378 

14.2% and 17.8% before and after manual curation respectively. Of these curated SVs, we 379 

identified 40.42% of them that were annotated as a type of repeat (Fig. 1b). Specifically, 293 of 380 

these were identified as SVs that were likely to be TEs, and these were removed from the final SV 381 

dataset, leaving a total of 936 variants. Of the identified TEs, LTRs were the most common TE 382 

class, followed by LINEs, with very few SINE or DNA transposons, reflecting the large proportion 383 

of LTRs and LINEs in the hihi genome (Bailey et al., 2023). Profiling of the SV length distributions 384 

pre- and post-TE filtering confirmed that TE associated peaks were removed during this filtering 385 

step (Fig. 1c) and identified that a majority of them fell in the range of 50-150 bp in length.  386 
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The cumulative length of the final filtered SV dataset was 420,304 bps, which was 387 

approximately one seventh of the coverage of the final filtered SNP data set that consisted of 388 

3,111,629 SNPs. The PCA produced from SNPs and SVs were very similar to one another (Fig. 389 

S7), which both identified the Te Hauturu-o-Toi individuals distinct from those captured on 390 

Tiritiri Matangi. Additionally, individual heterozygosity based inbreeding metrics were well 391 

correlated across the two datasets (R-squared = 0.6291; Fig. S8), indicating that the SV dataset 392 

represented a collection of high confidence SVs. 393 

The site frequency spectrum (SFS) of SNPs and SVs was very similar in showing very few rare 394 

alleles (Fig. 1d). However, the alternate/minor allele for SVs was more numerous than for SNPs, 395 

appearing as an increase in heterozygous genotypes compared to homozygous reference (Fig. 396 

1e). 397 

3.2 | Mutational load  398 

The genome wide distribution of SNPs and SVs was overall fairly similar, and generally reflective 399 

of genome proportions of coding and non-coding regions, with the majority of variants either 400 

intergenic or within introns (Fig. S9). However, the proportion of variants of each type that were 401 

found to fall in coding or near coding regions was larger for SVs than SNPs (Fig. 2a, F7,232=8056, 402 

p-value = <0.0001).  403 

We calculated mutational loads for all 30 individuals in the study, and assessed how well load 404 

metrics were correlated with one another, as well as with individual inbreeding. From the total 405 

genome-wide SNPs and SVs, 1,694,577 (54.7%) and 548 (58.5%) respectively were identified as 406 

within or close to genes and therefore contributing to load (Figure 2a).  SV load and SNP load is 407 

significantly correlated for both realised and masked load, with SV and SNP realised load being 408 

more highly correlated (Fig. 2c, F1,28 = 51.29, p-value = <0.0001, R2 = 0.6343) than SV and SNP 409 

masked load (Fig. 2b, F1,24 = 23.59, p-value = <0.0001, R2 = 0.4379). In general, levels of load in 410 

SVs and SNPs were more similar for realised load, while masked load values were slightly higher 411 

for SVs than SNPs. 412 

3.3 | Recombination rates and structural variants  413 

We identified that there was a positive association between recombination rate and the 414 

presence of SVs (Fig. 3a). We found that this difference was most pronounced on the 415 

microchromosomes, which in general had higher recombination rates even within regions 416 

without a SV present. Additionally, we found that pairwise linkage disequilibrium was slightly 417 

higher for SNPs than for SVs when examining linkage disequilibrium decay up to distances of 10 418 
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Mb (Fig. 3b). This pattern was more stochastic at smaller distances (<10kb), though the bin of 419 

variants closest to the SV breakends did see much lower linkage disequilibrium R2 values than 420 

for SNPs (Fig. S10). We found that patterns of minor allele frequency within SVs and SNPs are 421 

reversed when split by load contribution and across chromosome type (macro- or micro-) (Fig. 422 

S12). 423 

3.4 | Evolutionary conservation 424 

The inter-species genome alignment was completed for five avian species alongside the hihi 425 

genome (Fig. 4a). We found that 61.1% of the hihi genome was evolutionary conserved across 426 

all the other avian species examined, as measured by at least four other species aligning to 427 

these sites, while 4.9% of the genome’s length did not align to any other species and is unique 428 

to the hihi (Fig. S12). Patterns of genome conservation alignment were fairly consistent across 429 

all the hihi’s autosomal chromosomes, though the proportion that was conserved across all 430 

species decreased as chromosome length also decreased (Fig. S12).  431 

Genome wide patterns of genome alignment, which we use to benchmark patterns in SNPs and 432 

SVs, found that gene regions were the most evolutionarily conserved, up- and down-stream 433 

gene regions were the most unique, while intron and non-coding regions were similar (Fig. 4b). 434 

This pattern was consistent in SNPs and SVs, with the only deviation being that SNPs had higher 435 

levels of genomic alignment in the intron variants when compared to the variants that were not 436 

within or near coding regions (‘None’). The average level of genomic alignment for both SNPs 437 

and SVs was lower than the genome-wide patterns (including both variant and non-variant 438 

sites), though this decrease in genomic alignment was more pronounced in SVs. This pattern is 439 

primarily due to an inflation of the number of SV breakends that occurred in evolutionarily 440 

unique regions of the hihi’s genome, in comparison to SNPs (Fig. S13).   441 

3.5 | Mutational load impact on lifetime fitness 442 

We found a significant negative relationship between both SNP realised load (Fig. 5a) and SV 443 

(Fig. 5d) realised load with lifetime fitness (Table S3, β = -235.988, p-value = 0.0216 and β = -444 

232.252, p-value = 0.0126 respectively). Contrastingly, we found a positive relationship between 445 

both SNP masked load (Fig. 5b) and SV masked load (Fig. 5e) with fitness, though SNPs had a p-446 

value just above the significance threshold (Table S3, β = 168.152, p-value = 0.0622 for SNPs 447 

and β = 218.218, p-value = < 0.0001 for SVs). The contribution of common homozygote 448 

genotypes at load sites was less consistent in the SNP and SV datasets, with SNP homozygosity 449 

(Fig. 5c) not significantly correlating with fitness, while SV homozygosity (Fig. 5f) was negatively 450 
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and significantly correlated (Table S3, β = 0.7033, p-value = 0.9925 for SNPs and β = -137.680, p-451 

value = 0.0124 for SVs).  452 

To determine the relative contribution of SVs and SNPs to the load signals, we ran a further two 453 

linear mixed models, one fitting both SNP and SV masked mutational load, and one fitting both 454 

SNP and SV realised mutational load. Within the masked load model, we found that masked SV 455 

load was positively correlated with lifetime fitness (Table S3, β = 250.698, p-value < 0.0001), 456 

however this trend was neither significant nor in the same direction for masked SNP load (Table 457 

S3, β = -81.899, p-value = 0.3050). Within the realised load model, neither realised SV load 458 

(Table S3, β = -183.658, p-value = 0.1893) nor realised SNP load (Table S3, β = -65.136, p-value = 459 

0.6680) was significantly associated with lifetime fitness, though both trends were consistently 460 

negatively associated with lifetime fitness.  461 

We partitioned the SV masked load into evolutionary conserved and less conserved genomic 462 

regions and found that both these components of masked SV load were significantly and 463 

positively correlated with lifetime fitness (conserved regions: β = 233.937, SE= 67.190, t-value = 464 

3.482, p-value = 0.003; less conserved regions: β = 201.120, SE= 70.017, t-value = 2.872, p-465 

value = 0.009). 466 

  467 



16 
 

 468 

Figure 1 | Genetic diversity and genomic distribution profiles of single nucleotide 469 

polymorphisms (SNPs) and structural variants (SVs) for hihi (Notiomystis cincta) 470 

individuals. Panel (a) depicts the historic and present-day range of hihi on the North Island of 471 

Aotearoa New Zealand, with sampling locations from this study labelled with placenames. A 472 

depiction of the male and female hihi is also included (illustrations by Hui Zhen Tan). Panel (b) 473 

depicts the repeat annotations of the curated SVs. Panel (c) depicts the length profiles of the 474 

SVs pre- and post- transposable element (TE) filtering. The TE identity of the peaks in this plot 475 

are annotated with the primary TE responsible for the peak. Panel (d) is the site frequency 476 

spectrum of SNPs and SVs. Panel (e) is a boxplot of genotype frequencies across SNPs and SVs, 477 

averaged on a per-variant basis.  478 

  479 
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 480 

Figure 2 | Patterns in variant impact and genetic load of single nucleotide polymorphisms 481 

(SNPs) and structural variants (SVs). Panel (a) is the proportion of SNP and SV minor allele 482 

variants within individuals that has been categorised based on their overlap with gene regions. 483 

Panels (b) and (c) show the significant correlation between SV load and SNP load for masked 484 

and realised load respectively.  485 

  486 
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 487 

Figure 3 | Structural variants in hihi in relation to recombination rates, linkage 488 

disequilibrium, and minor allele frequency. Panel (a) displays average recombination rate 489 

across 500Mb regions of the genome, classified by whether at least one SV is present with that 490 

region or not, and across either macro or micro chromosomes. Panel (b) displays linkage 491 

disequilibrium decay up to 10 Mb away from the SV variant breakends (or the SNP position).  492 

  493 



19 
 

 494 

Figure 4 | Evolutionary conservation and genome evolutionary conservation of the hihi 495 

across genomic locations of structural variant (SVs) and single nucleotide polymorphism 496 

(SNPs). Panel (a) depicts the phylogenetic tree used in the PROGRESSIVE-CACTUS analysis, panel 497 

(b) depicts the average cross species conservation of genomic regions where different variant 498 

types and impact groups are located, where a value of 0 indicates a genomic sequence unique 499 

to the hihi, and a value of 5 indicates a region that is conserved across all species analysed. 500 

Pictures taken from https://www.phylopic.org/.  501 

  502 
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 503 

Figure 5 | Impact of structural variant (SVs) and single nucleotide polymorphism (SNPs) 504 

realised load, masked load, and common allele homozygotes proportion on lifetime 505 

fitness of hihi on Tiritiri Matangi. Scatterplot of the mutational load against the lifetime fitness, 506 

sex indicated by colour (female = red, male = blue), and mixed effect model fit lines indicated 507 

when the relationship with lifetime fitness was significant (or very near significance, in the case 508 

of SNP masked load). Two individuals from Te Hauturu-o-Toi were excluded from this analysis as 509 

no lifetime fitness values were available for them. Panel (a) shows SNP realised load, panel (b) 510 

shows SNP masked load, panel (c) shows SNP common allele homozygote proportion. Panel (d) 511 

shows SV realised load, panel (e) shows SV masked load, panel (f) shows SV common allele 512 

homozygote proportion. 513 

  514 
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4 | Discussion 515 

Within small populations, conservation practitioners are particularly concerned with increased 516 

inbreeding, loss of genetic diversity, and greater mutational load burdens (Dussex et al., 2023). 517 

In order to best track and manage these, the development of genomics-informed best practices 518 

in conservation management requires that we understand how different components of the 519 

genome contribute to functional genetic diversity. Through whole genome resequencing 520 

approaches it is possible to quantify the more commonly studied single nucleotide 521 

polymorphisms (SNPs) alongside structural variants (SVs), allowing us to achieve a more 522 

holistic summary of inter-individual variation (Wellenreuther et al., 2019; Wold et al., 2021). In 523 

this study, we specifically focus on load contributing genetic variation in SNPs and SVs and find 524 

that masked and realised load is significantly but only moderately correlated across these two 525 

genetic variant types. When testing for a relationship between load and lifetime fitness, there 526 

was a significant negative relationship between realised load and fitness, and a significant 527 

positive relationship between masked load and fitness for both SNPs and SVs. Interestingly, 528 

when combining SNPs and SVs into the same model, SVs consistently had a stronger 529 

correlation with fitness. However, of the four terms tested, only masked SV load remained 530 

significantly correlated. This demonstrates that SVs are an important component of intra-531 

specific variation in the highly inbred and endangered hihi population on Tiritiri Matangi, and 532 

that in order to optimise conservation genomic practice we may need to incorporate SV 533 

profiling. 534 

4.1 | Mutational load may not be equivalent across SNPs and SVs in small populations 535 

Our results demonstrate that patterns of reduced genetic diversity in the hihi are just as evident 536 

in SV as SNPs (Fig. S8) (Duntsch et al., 2021). Within the current study we have not identified 537 

SVs as hidden source of unexpected genome wide patterns (Fig S7) or rare variants (Fig. 1d) 538 

within the species, as has been found in some studies (Berdan et al., 2021; Stuart et al., 2023; 539 

Weissensteiner et al., 2020). The observed moderate correlation between SNP and SV load 540 

(44% for masked and 63% for realised load) indicates that within individuals, while one variant 541 

type’s load may be somewhat predicted by the other, SNPs do not act as a perfect proxy for SV 542 

load (Fig. 2b & 2c). The moderate correlation could be explained by the differential 543 

heterozygosity patterns between the marker types, with a slightly higher prevalence of 544 

heterozygous SV than SNP genotypes in the population, alongside an enrichment of SVs in 545 

regions of the genome with higher recombination rates (Fig. 1e, Fig. 3a). The deviation in 546 

individual SNP and SV load contributes to differential patterns when linking individual load to 547 
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individual phenotype within the 28 assessed individuals. When testing both SNPs and SVs 548 

concurrently, we identified only masked SV load as statistically correlated with lifetime fitness 549 

within the successful hihi breeders used in this study (Fig. 5, Table S3) and found that this 550 

pattern was apparent in both evolutionary conserved and unique genomic regions. Further, 551 

though the joint SV and SNP realised load model was not significant, the magnitude of the 552 

effects (β) suggests that SVs once again contributed more strongly to the negative correlation 553 

with fitness than did SNPs (Table S3). 554 

Genetic load in small, threatened populations is a result of the interaction between several 555 

factors. Reduced efficacy of selection in small populations means that purifying selection is 556 

less efficient because drift has a stronger effect (Brandvain & Wright, 2016; Dussex et al., 2023). 557 

Drift also causes stochastic loss of genetic diversity (Jamieson et al., 2008), and loss of genetic 558 

variants is further increased through elevated levels of inbreeding leading to effective purging of 559 

highly deleterious variants (Dussex et al., 2021; Robinson et al., 2022). Although hihi were once 560 

widespread across the North Island, it is likely that the remnant Te Hauturu-o-Toi island 561 

population has historically been isolated and small (Duntsch et al., 2023). Impacts of human 562 

settlement followed by a secondary extreme bottleneck of 21 individuals to found the Tiritiri 563 

Matangi population in 1995-1996 (Armstrong et al., 2002; Duntsch et al., 2023) is likely to have 564 

further impacted the landscape of genetic variation. Compounding on top of this is that 565 

supplementary feeding supports a high population growth rate on Tiritiri Matangi, with the island 566 

frequently used as a source of translocations (Ewen et al., 2013), which may also reduce the 567 

strength of natural selection and encourage retention of mildly deleterious variants (Fronhofer 568 

et al., 2024).  569 

While this study only examined a small cohort of individuals the relationship between SV load 570 

and hihi fitness supports the hypothesis that, while purging may have effectively removed the 571 

most deleterious of variants, the strong effects of drift have led to mildly deleterious SVs 572 

becoming more common in the Tiritiri Matangi population. This has been seen in another 573 

recovered wild avian population, where highly deleterious variants were purged, but not 574 

moderately deleterious ones (Femerling et al., 2023), and is also supported by signals of 575 

genome-wide inbreeding depression in the population (Duntsch et al., 2023). Because SVs are 576 

more likely to be deleterious than SNPs (Hämälä et al., 2021) and thus have likely faced stronger 577 

purifying selection historically, this may mean that the weakened selection has resulted in a 578 

relatively larger increase in SV based load than SNPs when considering patterns pre- and post- 579 

the bottleneck imposed by reintroduction of hihi to Tiritiri Matangi. It is possible that more 580 

deleterious variants exist within the hihi individuals that are not successful breeders. Future 581 
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work on this species will look to profile SVs across this species more broadly, to understand the 582 

role they play in, for example, different life stages and how the SVs themselves are impacted by 583 

demographic processes. 584 

4.2 | The relationship between mutational load and fitness 585 

In our results, we demonstrate that (when fitted alongside SNP load) there is only a significant 586 

correlation between SV load and fitness when considering SV masked load, and not SV realised 587 

load. Traditionally realised load is considered to be the load that is currently impacting 588 

individuals, whereas it is both masked and realised that will impact future generations (Dussex 589 

et al., 2023). However, this assumes the negative impact of load is conferred by recessive and 590 

deleterious derived variants, whereas phenotypic expression could be impacted by other 591 

effects such as additive or overdominance expression (Li et al., 2008), and it is possible that the 592 

relationship between variant and phenotypic impact is stronger and/or more complex for SVs 593 

than in SNPs (Buchanan & Scherer, 2008).  594 

It is somewhat unexpected that SNP based load metrics were significantly (or borderline 595 

significantly) correlated with fitness when tested individually, but were no longer so when tested 596 

jointly with SV load. This may be because the SNP dataset captures roughly 3 million SNP 597 

markers containing proportionally more neutral variation than the ~1,000 variants captured in 598 

the SV dataset (Fig. 2a) (Collins et al., 2020; Hämälä et al., 2021). Even when reduced to the 599 

~54.7% of variants in proximity to genes during load calculations, it is likely that contributions of 600 

realised and masked SNP load to fitness are made less apparent due to the predominance of 601 

neutral markers, compared to the higher impact but lower density markers like SVs. When both 602 

SNPs and SVs were fitted jointly, the stronger relationship between SV load and fitness also 603 

suggests that much of the relationship between SNP load and fitness may have been driven by 604 

linkage disequilibrium between (neutral) SNPs and nearby (mildly deleterious) SVs. Exploring 605 

the application of additional approaches such as selection analysis (e.g. Gautier, 2015) to 606 

further refine which components of genetic diversity are functional and contribute to load may 607 

help to better capture functional variation for load calculations when working with high density 608 

SNP makers generated from WGS data.  609 

Ultimately, the results of this study demonstrate that identifying SVs allows us to capture unique 610 

components of inter-individual genetic variation which may be vital for linking genetic patterns 611 

to important phenotypic traits such as fitness, especially within this threatened species. Where 612 

possible, WGS data should be equally interrogated for SNP and SV patterns, to understand the 613 

distribution of more neutral SNPs and more deleterious SVs within the population. That being 614 
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said, mildly deleterious variants are important sources of functional genetic diversity that may 615 

become beneficial under shifted section engines, and ultimately any reduction of genetic 616 

diversity reduces long-term adaptability to environmental shifts, i.e. adaptive potential 617 

(Femerling et al., 2023; Kardos et al., 2021). Thus, to best manage populations with highly 618 

reduced genetic diversity, the broad identification of genome wide variants is necessary, and 619 

management processes that maximise heterozygosity may be most useful for future proofing 620 

species of conservation concern.  621 

4.3 | SVs arise in regions of high recombination and low genome conservation 622 

The dynamic genomic recombination landscape that both causes and is impacted by SVs 623 

(Mérot et al., 2020; Morgan et al., 2017) may explain the slightly steeper linkage disequilibrium 624 

decay patterns seen in SVs compared to SNPs (Fig. 3b). The slightly weaker linkage 625 

disequilibrium between SVs and surrounding SNPs may be due to biological reasons such as 626 

recombination rate and differential selection impacts (Cumer et al., 2021; Pang et al., 2010), as 627 

well as technical reasons caused by imperfect variant calling of both the SV and surrounding 628 

SNPs (Audano & Beck, 2024; Geibel et al., 2022). The latter is likely to explain the highly 629 

stochastic patterns seen in the immediate vicinity of the SV breakends (Fig. S10), while the 630 

former may explain more distant pairwise patterns (Fig 3b).  631 

We found that regions of high recombination are associated with the presence of SVs, and this 632 

pattern is more evident on the micro-chromosomes within the hihi (Fig. 3a). 633 

Microchromosomes are considered evolutionary building blocks in avians (Waters et al., 2021), 634 

and our results indicate that these adaptive hotspots may encourage SVs which contribute to 635 

adaptive diversity within a population (Fig. 3a). Higher levels of recombination on micro-636 

chromosomes can both cause novel variation and break up linkage disequilibrium between 637 

variants, allowing adaptation to happen faster (Peischl et al., 2015) which in turn facilitates 638 

more efficient evolution (Haenel et al., 2018). We see this trend in the evolutionary conservation 639 

genome alignment results (Fig. 4) which demonstrate that SVs, regardless of their load 640 

contribution, on average arise within more unique regions of the hihi genome. Intriguingly, within 641 

micro-chromosomes load contributing SVs occur at higher frequencies than variants that do 642 

not contribute to load, a pattern reversed in SNPs (Fig. S12). This may reflect genomic region 643 

biases in which SVs and SNPs are likely to be created, as the former arise in high recombination 644 

regions which are often the regions in which genes occur also (Tan et al., 2024).  645 

4.4 | Technical validation of SVs and exclusion of TEs 646 
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Because of the size and complex nature of SVs, it is more technically challenging to identify 647 

them in comparison to SNPs (Mahmoud et al., 2019; Wold et al., 2023). Through manual 648 

curation of SVs the false positives may be reduced (Belyeu et al., 2018; Belyeu, Chowdhury, et 649 

al., 2021), and the improvement in Mendelian inheritance errors in our data after manual 650 

curation (Fig. S1-S6) is indicative that the process improved the accuracy of the SV dataset. We 651 

also consider in our study the importance of excluding transposable element sequences from 652 

analysis (Fig. 1b). Some of the aims of this study were to examine patterns of recombination and 653 

evolutionary conservation near or at SVs and SNPs. TEs arise through self-replication and 654 

relocation (Belyeu, Brand, et al., 2021; Biémont & Vieira, 2006), and so their relationship to 655 

surrounding genomic features and patterns may interfere with identifying patterns pertinent to 656 

non-TE SVs which themselves arise through mechanisms of DNA recombination, replication, or 657 

repair (Carvalho & Lupski, 2016; Currall et al., 2013). It is also important to note that TE-658 

mediated SVs are more likely to introduce technical challenges during both SV identification 659 

and genotyping in surrounding SNPs (Audano & Beck, 2024) and that targeted TE identification 660 

processes (e.g. Chen et al., 2023) would be more appropriate for assessing TE specific load. 661 

We found targeting breakends to be an efficient approach to removing the offending repeat 662 

sequences from our final SV dataset (Fig. 1c), though note that profiling the impacts of TE load is 663 

a pressing future direction in conservation biology, particularly in small threatened populations 664 

that may experience greater stress and reduced TE suppression (Stapley et al., 2015). 665 

4.5 | Future directions 666 

The individuals used in this study were specifically successful breeders within the small Tiritiri 667 

Matangi population, and so arguably may not carry the most deleterious variants. Despite this, 668 

there was enough variation in slightly deleterious load across individuals, and enough variance 669 

in fitness, to detect an impact of genetic load on lifetime fitness. Future directions of study in 670 

this system will aim to profile SVs across a wider variety of individuals to identify correlations 671 

between load and the presence or absence of successful breeding, as this may better capture a 672 

wider range of deleterious homozygous minor alleles. We note also note that because of the 673 

limits of profiling SVs with short reads (Mahmoud et al., 2019) our methods are not appropriate 674 

for the detection of larger SVs. With the promise of increasingly affordable longer read 675 

sequencing technologies we can begin to accurately characterise larger SVs (Schloissnig et al., 676 

2024) which are likely to have larger functional impacts which could impact fitness (Abel et al., 677 

2020). 678 
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Further, we note that our designation of the minor allele as the derived allele in assessing load 679 

makes a number of the assumptions, namely that derived alleles are deleterious, that the 680 

deleterious, derived allele will be the rarest, and that the rarest allele in our small dataset is the 681 

minor allele in the population. Because hihi are phylogenetically distinct and even the closest 682 

species do not have well-assembled genomes, it would be challenging to accurately polarise 683 

even the SNP data. We also note that decreased evolutionary conservation for SVs relative to 684 

SNPs (Fig. S12) means that outgroup selection will be more prone to bias with increasing 685 

outgroup phylogenetic distance for the former variant type, indicating outgroup selection will be 686 

very important for correct SV polarisation. As discussed above, the small population size is 687 

likely to have led to some deleterious alleles reaching high frequencies by drift. Sampling a 688 

small number of individuals from the population is also likely to have mis-identified the ‘correct’ 689 

realised load genotype. Indeed, the negative correlation between fitness and the major allele 690 

homozygous genotype (Fig.  5c) may suggest that a number of realised load genotypes have 691 

been incorrectly classified. We expect therefore that if variants can be successfully polarised, 692 

the true realised load values will become be larger and the relationship with fitness stronger 693 

(Keightley & Jackson, 2018).  694 

Finally, restricting load calculations to gene-proximate regions ignores the functional role non-695 

coding regions of the genome may play in influencing phenotype. Sequence variation can 696 

influence phenotype through, for example, alterations to cis -regulatory elements and three 697 

dimensional structure DNA (Engreitz et al., 2016; Soto et al., 2023; Spielmann & Mundlos, 698 

2016), which will undoubtedly be differentially impacted by SNP and in particular SV variants. 699 

Thus, limiting load estimates to coding regions of the genome may neglect important functional 700 

variation within a population, impacting our ability to accurately identify and predict the 701 

adaptive potential for a species (Kardos et al., 2021), and is another avenue for future research 702 

within this system and also more broadly within conservation genomics. 703 

5 | Conclusion 704 

In highly inbred species like the hihi, identifying all aspects of functional genetic diversity is 705 

extremely important. Previous research in the hihi has found fairly low adaptive potential as 706 

interpreted from low heritability of fitness and fitness-associated traits (de Villemereuil et al., 707 

2019). However, quantifying a more comprehensive genome-wide profile of intra-individual 708 

variation has revealed previously hidden associations between fitness and underlying genetic 709 

variant patterns. This study demonstrates that the SV variants contain important aspects of 710 

variation that may be highly applicable to conservation decisions within a species. This study 711 
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joins the many that demonstrate the non-redundant genomic variation captured by structural 712 

variants may have important functional implications (e.g. Catanach et al., 2019; Li et al., 2024; 713 

Rafter et al., 2021), and reveals that our ability to assess genetic diversity and load in small 714 

populations will always be limited if we only investigate SNPs.  715 
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